Journal of Engineering Mathematics 30: 267-297, 1996.
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Stokes flow due to infinite arrays of stokeslets in three dimensions
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Abstract. Infinite periodic arrays of stokeslets in three dimensions are summed up by obtaining various rapidly
converging infinite series. The three cases treated here are: 1. Identical stokeslets distributed at constant intervals
on a line parallel to a plate, 2. An array of identical stokeslets distributed on a two-dimensional periodic lattice on
a plane parallel to a plate, 3. The same array, but parallel to and in between two plates. Computational results are
shown and comparisons with previously averaged expressions are made.

1. Introduction

In 1896 H.A. Lorentz [1], the famous Dutch physicist derived, among other things, the Stokes
flow due to a point force in an infinite medium. He also derived a reciprocal theorem from
which one also expresses the flow due to a point force above an infinite flat plate. The Stokes
flow due to a point force now goes under the name of a stokeslet.

Since then, only a few additional analytic expressions for a stokeslet in different geometries
have been found. The stokeslet for a point force inside or outside a sphere was given by Oseen
[2], above an infinite plane again by Blake [3], between parallel plates by Liron & Mochon
[4] and inside an infinite circular cylinder by Liron & Shahar [5].

Beginning with the work of Gray & Hancock [6], the role of the stokeslet as a basic building
block in modeling slender body motion in Stokes flow, was established. Many works using
distributions of stokeslets, and higher-order singularities ensued. These are nowadays used
to model the various motions of flagella and cilia, suspensions, sedimentation problems and
many more. For the use to flagellar motion see Lighthill [7,8], and for use in ciliary motion
see the adaptation of Lighthill’s theorem to cilia by Gueron & Liron [9,10].

Since cilia fields show quite frequently periodic, or almost periodic, motion, it follows that
the basic building block to the resultant flows is an infinite, or doubly infinite regular array
of stokeslets, all with the same strength, see Blake [11], Liron & Mochon [12], and Liron
(13,14]. In all of the above papers these stokeslet fields were averaged to some extent, at
least in one direction to yield a mean or averaged velocity. However, to be able to see local
fluid behavior, this should not be done. This we accomplish in this paper, obtaining solutions
without any averaging to the following problems: An infinite periodic, discrete, distribution
of stokeslets on a line above a flat plate, Section 2; A doubly infinite array of such stokeslets
above a flat plate, Section 3, and between parallel plates, Section 4. Except for the latter, these
are infinite summations of the Lorentz solutions.
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Fig. 1. Configuration of all three problems and the stokeslet distribution. For the third problem the plates are at
z3 = 0, H and the stokeslets are located at height x3 = h above the lower plate. All stokeslets are identical. For
the first two problems, the top plate does not exist.

2. An infinite line of discrete stokeslets above a flat plate

Consider an infinite array of identical stokeslets situated at a height 23 = h above a flat plate
(z3 = 0), as in Fig. 1 where we disregard the plate at z3 = H, and assume that only one line of
stokeslets exists, a distance a apart. The coordinate system is defined such that the stokeslets
are situated at the points §,, = (na, 0, k), n = 0, £1, £2,. .. Because of the periodicity of the
problem, we can restrict our attention to the strip0 < z; < a, —00 < z3 < +00,0 < 23 < 0.
For every x = (7‘?, T2, 23) in this strip, the radius vector form the stokeslets at £,, to x is

rn=(r?—na,rz,a),n=0,i1,...;a=x3—h, 2.1

and from the image point to x

Rn=(r?—na,rz,ﬁ),n=0,:t1,...;ﬁ=x3+h, 2.2)
where
0<rd<a. (2.3)

If G;‘-’(x,E ), 7 = 1,2,3, is the velocity (Green’s function) at x for a stokeslet situated at
& pointing in the k direction (k = 1,2,3; Cartesian coordinates) and such that the no-slip
condition is satisfied on the plane z3 = 0, then

o= {8 ) - (55

iz 87 r r3 R R3
4 §3Rj 6]’ RjR3) }]
+283(6kabal — Ok3631) R, { 73 ( =+~ ,
k=1,2,3; j=1,2,3, (2'4)

where o = 1,2 and r and R are defined as

r (£U1 —51,2132'—52,1133 _63)’
R = (21 — &1, 22 — §,73 + &3), (2.5)
r = |r|,R=|R|.
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The pressure is given by
1 T R Jd (R
ko = ({Ik _ Wl - R i) — 9.

see Blake [3].
To obtain the velocity at x due to the infinite sequence of stokeslets at £,,, we have to sum

Ui = 3 G5(x.&,) @27

n=—oo

‘We now show some details of deriving expressions for Uf in(2.7). We first derive closed-form
integrals, which we later convert to rapidly converging infinite series. The full expressions are
given in Appendix A.

2.1. OBTAINING EXPRESSIONS FOR Uf

Define
pL=(+na)+r15, S=rj+d’, p=ri+p (2.8)
Then

™ =1y/pi+to?, Rn=+/p}+ 0%

To obtain U} we have

1 1 7'2 7'2 15} hR R{R
1 _ E‘ 1 _ E: 1 1 1 1413
871/LU1 = Gl— l:{;—_}+{7-_3—_3-}+2h 1{ 5~ 3 } ,

n=-—00 n=—co
(2.9)
where for simplicity we have omitted the subscript n on all r, R.
To compute the first sum, use the Lipschitz integral (see G.N. Watson [15])
1 o —la|A
Fra /0 Jo(pA)e~1er d), (2.10)
to obtain
5= 3 (2-2)= 5 [Tl - oonje ek a
n=—oo M1 Ry n=—co0 Y0
= / [Jo(sA) = Jo(pA)] Y, e"mrdy
0 n=—0Q
. cosh ((7‘? - %) /\)
- /0 [Jo(sA) = Jo(pA)] dA. @.11)

] aA
sinh <7‘ )

We can now use the following expression, see Liron & Mochon [4]:
[e o]
/0 Jo(bz)z* ! F(z)dz = mi (sum of residues in upper half plane of

F(2)2"*' H{V(bz) including one half of the residue at z = 0), (2.12)
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when F'(z) is an even function of z and F'(z) decays exponentially to zero on the real axis, as
x = Re z — +00, and b real, to obtain

4 =X 271lr0 2ml 2ml 2 P
Sl=;§°05< a‘)[Ko(TS) Ko (5p)] +2m (3) i

Here K is the modified Bessel function of the first kind of order zero, (see Abramowitz &
Stegun [16]).
To obtain the second sum in (2.9), we write

e 0 «— [r_mn
=3 {3-F=a-5 5 {2-3) 219
where

2 {1} - %} =2 Tl(n)/o [Jo(s) = Jo(pA))e~In(miRgy,

n=--oo n=--00

Changing the order of summation and integration we can write

o0 ' o0 o0

Z Tl(n)e—l"l(")“ — Z (7‘? + na)e—(r‘l’+na)A _ Z(na _ 7.(1))6—-(1m—-r‘1’),\
n=-—oo n=0 n=1
d < ~(r9+na)X d ¢ —(na—19))
- _a n=0€ 1 " a Z ¢ 1

d [ oo [o.¢]
_ Z e—(r?-{-na)A _ Z e—(na—r?)/\]
dA Ln=0 n=1

) a
d [ e e_(a_rg),\] d sinh ((5 - r?) /\)

T d dX . a,\)
smh( 2

dA |1 —emaA T l—e @

and obtain
a
sinh (= —r)) A
— [ _mnl_ [® d ((2 ‘>)
_Z {7“&5}‘ /0 [Jo(sA) — Jo(p/\)d/\ . (a/\> d).
n=-—00 sinh 7

Integrate by parts and insert in (2.14) to obtain

Sy = i {ﬁ B ﬁ} =5 - /ooo[le(s/\) - pJi(pA)] oo <(§ _ T?) /\) dA.

3 3 A
r R sinh (a_)
2
We can now use (2.12) to transform the integral to an infinite series and the final form of S is

Sy =8 — Zl (2”” ) [ K (2”1 ) — pKi (%g—lp)] . (2.15)

n=—oo
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Again K| is the modified Bessel function of the first kind of order one.
For the last sum in (2.9) notice that

9 {th_R1R3}
R\ B B

s0, using (2.13), we obtain

1

ey LT g I =

81R3’ R?

A2 cosh ((r? - %) ,\)
dX

o0
—2hzs / Jo(pA) =
0 sinh <—2—>

32hz3m? 2nlr 2l
= 3 Z ( 1) K, (Tp) . (2.16)

2h

__9
= "o

2 0 {th R1R3}

OR, \ BB R®

This completes the computation of U}.
To calculate the other components of velocity and pressure we need

oo 2 2 00
_ L) T2 _ 2 181 191
5= L {Fi‘ﬁ?}‘“’"z Y Lz smn

n=—oo

3 [ [2lN AN cosn(+1-5)) 0

where z = x3. In a similar way we obtain

si= 3 {5 2o [y guon) con((-5)%)

3 R s P snh(‘“) ’
2

O R sy (i Y

. a
sinh (—2—>

So= 3 {B - B o [ aad(en - Ao l( ;A%) ) ax,
smh( 2)

o . o h((r0-2

5 {122 zR3}= / A[aJls(sA) g ng»J © SES&“;)) A> dx.

All the other terms depend on 3~ 1/R3 or 3 /R which are parts of results above. All the
above are then transformed to infinite series using (2.12). Complete expressions are given in

Appendix A.
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2.2. COMPUTATION CONSIDERATIONS AND NUMERICAL RESULTS

The infinite series in Appendix A all involve Ky or K| and the arguments /(27p/a) or
[(27s/a), where [ is the running index. Since Ko(z) and K (z) both decay exponentially
with z — oo, all series are rapidly converging except for p/a or s/a zero or very small. The
smallest p can get is A, the height above the plate, and so vanishes only on the plate, but s is
zero for 1 = a = 0, i.e., on the line z; = 0, £3 = h, the line on which the stokeslets are
distributed. In this case the expressions in the Appendix are invalid, and we have to calculate
the infinite integrals. To accelerate convergence of the integrals, we proceed as follows. Take
for example S;

o P2,

] ai

sinh (—2—)
e exp(=(a — r{)A) + exp(=rP))
= /0 [Jo(sA) — Jo(pA)] 1_éxp( —aX)

= [Tten) — o) ZRET TN

dA

1 - exp(—a))
oo xp(=r?
+/(; [Jo(S/\) - JO(p’\)]—e:%SE)(—-%)T\S aA
) 1 exp(—(a + TO)/\)
S

- + [Tn(a) - Jop)) L2 2T
-

[p2 + (a =192 Jo 1 —exp(—ad) ’

which ensures exponential decay of the integrand, as exp(—aA), even for s = 0. This is, of
course, leaving the closest stokeslets in their original form, and summing up the rest. This can
be repeated to obtain faster convergence, if needed.

In Figs. 2a—d we show some examples of results. In Fig. 2a we show U 11 as a function of z3
for a fixed z;(= 0.3) and various values of z;. The line of computation closest to a stokeslet
is 7 = 0, and indeed U1 achieves a maximum there for z3 = h = 0.5, as expected. Fig. 2b
shows Uj 3 under the same conditions, and Fig. 2c shows examples of the other components
along a snmlar line. To demonstrate the behavior of the pressure distribution we depict P3 for
the same line as U}, in Fig. 2d.

3. Infinite arrays of stokeslets above a flat plate

In the section we extend the results of the previous section to a doubly infinite array of
stokeslets, as seen in Fig. 1, where we disregard the plate at 3 = H. The stokeslets are
spaced a distance a apart in the z; direction, a distance b apart in the z direction, and at a
height A, as before, above a flat plate.
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Fig. 2. Velocities and pressure due to a line of equally spaced identical stokeslets at height h = 0.5 above an
infinite flat plate. The stokeslets are situated a distance a apart (sec Appendix A for full details). (a) 87U} at
z; = 0.3 as a function of x; for various values of z3; (b) 87rU33 at z; = 0.3 as a function of z3 for several values
of z2; (c) 8x[U}, U}, U2, U] for 1 = z2 = 0.3 as a function of «3. (d) 47 P* at z; = 0.3 as a function of z; for
several values of z,.

Because of the periodicity of the problem we can restrict our attention to the strip 0 <
21 < 4,0 € 72 < b,0 £ 23 < 00. Thus the stokeslets are situated at

€nm = (na,mb,h),n=0,%1,.. m=0,%1...,
and for any x = (9,79, z3) in the above strip, the radius vector from &,, , to X is

tom = (10 = na,7y ~mb,a),a =z3~h, n=0,%1,...m=0,%£1,..., 3.1
and from the image point

Rom = (1) —na,r) —mb,B),f=23+h, n=0,%1,...m=0,%1,..., (3.2)

where 0 < 79 < a,0 < rJ < b. As before Tn.m = |Fnml, Rnm = [Rnml-
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Fig. 2. Continued

To obtain the velocity due to the doubly infinite array of stokeslets at £,, ,,, we now have
to sum

Ur= 3 Y Gixé&..), (3.3)

n=—oom=—oo

where G¥ is given in (2.5).

3.1. OBTAINING EXPRESSIONS FOR UJ’-c

Define
Pim = (1) +na)? + () + mb)2 = r¥(n) + r}(m), n=0,%1...;m=0,%+1...
p=ri+d, ph=ri+ 0, (3.4)

where in the second line we have omitted the explicit dependence on n. Thus

Tnm = \/P2m+ 0%  BRom=1/p% .+ B2 (3.5)
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We now show how to calculate S, similar to (2.13), except that we have a doubly infinite
sum.

S = E E (—— —) E E [Jo(p1A) — Jo(pzx\)]e_'rz(m)l’\d/\

n=-—-00m=—0o0 n=—0o00 m=—0o0

¥ o aa =l
=,,_z_m[ oo (Wz) [Ko(Zhan) 10 (32 )] +2u(2)]
1S S () (B - ()] o2 £ (2).
n_z_wl() n_z_wl( ) let |a] = pf and define
,1_2_3@1 (%32 (ﬁ?inzc):ﬁ)’

from which the derivative is

00 2
f'(8) = n_X_joo Tﬁfﬁz 2 ip,ffﬁz] :
Using
i 1 _r sinh(27a)
= a2+ (n—b)2  2a sinh®(wa) + sin?(mb)’
we have
f(B) = % - (hﬁ) psmh( pﬁ)

o () v () s () e (3
1m2<ﬂ>+ ()]

=1 FO).
a7 sinh? (%@) + sin? (7"?> K

a
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Thus F () and f(() differ by a constant, at most.
For § =0, f(0) = 0, F(0) = 0, for { # 0, implying F(B) = f(8). For r{ = 0, f(0) =
In ;j, and F(O) In - and again F(6) = f(6). Thus

ﬂ) 7r?
2 ( i
oo 52 + rf sin 2 + sin ——a
Z In 12 =In 5 ,
! sinh? (E) +sin2 [ TL
a a

and this completes Sy for the case p}(n) = r#(n) + o? p3(n) = r¥(n) + % and p?(0) > 0,
namely

n=-—oo

(3.6)

The expression for S| above becomes invalid for p;(0) = 0, i.e., when 'r? =0,z3 = h.In
this case we can repeat the steps leading to (3.6), interchanging the order of summation over
m and n. This yields an expression similar to (3.6), namely

=1 5 T () [ () -1 ()

n——OOI 1

0

2 (78 T
sinh ( a ) + sin? <_b )
0

2 (8] 71'7'2
sinh ( 3 )+sm (————b )

for the case p?(m) = r2(m) + o2, p3(m) = r3(m) + 52 and p3(0) > 0.
Expression (3.7) for .S; above becomes invalid for rg =0,x3 = h. Notlce that

(i) Either (3.6) or (3.7) is always valid. Both are invalid only for "'1 = r2 =0, z3 = h, which
is at a stokeslet.

(ii) The general term in the infinite series has Ko (Clp) as a multiplier where C i is 2= or 2;’
and p = p; or p;. Thus the argument is proportional both to [ and n(p ~ n). Since Ky
decays exponentially the series En__oo > i21() decays very rapidly.

(iii) For a =0, 1e T3 = h use (3.7) if 7'1 is also close to zero, and use (3.6) if r2 is close to
zero. If both 79 and rJ are close to zero then we are near a stokeslet and convergence is
poor as both senes blow up at ¢ = r§ = 0.

We shall demonstrate one more component. The complete expressions, covering all cases, are

given in Appendix B.

To obtain
o0 o0 2 2
DD {:—;-—I%} 3.8)

n=—oo m=—00

+=1In 3.7)
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use (2.15) to get

=S5 -—= Z Zl <2W1T ) [PIKI (2—2{ p1> ~ p K, (y—l Pz)] (3.9

n=-o00 [=]

where S is given in (3.6), with p;, p; as defined there.
Alternatively, write

N Oy
B R adal\r/) BOB\R

9 (l) _ / Jo(pA)e 2 dx = -—/ M (piA)eI2P .
aaa

i\ (Jl(/\pl) _ Jl(/\Pz)) o—Ir2l g
p1 P2

I
gk

(Mg
3,

\.

b
® (Jl (p/\lm) _d (p/\2p2)> COShS(lf:(‘bz’\Ti) /\) dX

. B sinh (ZZﬁ) ) a sinh (2_7;04_)

ab 0 0
¢ sinh? (1@) + sin? (T—l) inh? ( ) + sin® (——1—)
2 a a a

8T = ad 27\ 71 2ml 1 27l
7 Z erlcos( a 1) [_Kl (-a'Pl)—-p;Kl (szﬂ, (3.10)
=1

n=—oo pl

i
lM8
s—,

where, as before, p; and p, are defined in (3.4).
All expressions for the velocity and pressure, in summation, form, are given in Appendix B.

3.2. NUMERICAL RESULTS

We show here a selection of results of computing velocities and pressure inside the grid
0< 2z £a,0< 7z <b0< z3 <oo. InFig. 3 we show the graphs of two of the three major
components of the velocity U 11 ,and U; foragrida =b=1,h =0.5,at z; = 0.3 and several
values of z. The values of U 11 and U22 are quite similar with U22 showing less variations, and is
not reproduced here. They are not too far from the corresponding kernel H of Liron & Mochon
(12], or the kernel K of Blake [11]. The kernel H is the average of Uj in the z, direction,
and the kemel K is averaging in the x| direction as well. These results seem to be quite
independent of the relative size of the grid, and the height, if we are not close to a stokeslet, as
can be seen in Fig. 4, where we vary a. Varying b or h we obtain similar variations as in Fig.
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Fig. 3. Two of the three main components of velocity for the case a = b = 1, h = 0.5, as a function of z3 for
z1 = 0.3 and several values of 2. To be compared with the Kernels H and K, see text. (a) 87U}, and (b) 87 U3.
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Fig. 4.8nU/} as a function of «3, for £, = 22 = 0.3, h = 0.5,b = 1 and varying a.
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Fig. 6. The pressure as a function of z3, for z; = 0.3, and several values of z;. h = 0.5,a = b = 1. (a) 4= P, (b)

47 P,
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4, and all of them turn out to be almost identical when scaled by the varying parameter. Fig.
3b, for U3 is similar to H3 and differs from U], U? mainly due to the fact that the flux in the
z3 direction is zero, contrary to the flux parallel to the plate (x;, x; directions), see section 3
of Liron [13], dealing with flux and pressure due to stokeslets. If we take a point closer to a
stokeslet, then the behavior changes, again similar to the corresponding H kernels, see Fig.
2 in Liron & Mochon [12]. This is rather surprising, considering the distance between the
stokeslets seems to be large compared to the height above the plate (2:1). The behavior of the
other components of the velocity are depicted in Fig. 5. The pressures are shown in Figs. 6,
to complete the picture. P, is similar to P, in general features, and is not reproduced here.

4. Infinite arrays of stokeslets between parallel plates

We now consider the same problem as in Section 3, but with the stokeslets situated between
two parallel flat plates of a distance H apart, see Fig. 1. As before the stokeslets are at height
h above the bottom plate and distributed as in Section 3, at the points &, » = (na, mb, h),
—o00 < n,m < oo. Liron & Mochon [4] gave a complete solution for a single stokeslet
between parallel plates. This solution is

u§=yf+w§, j=1,2,3; k=123, (4.1)

p*=¢"+5*% k=123 (4.2)

As in (2.5) k is the direction of action of the force singularity u* is the velocity vector, and p*
the corresponding pressure. The expressions for the velocity and pressure are,

o0 sinh(AR)
47r;wJ"° = 6jk/0 Jo(Ap) s—mT((/\—}T)) sinh(A(H — z3))dA

5 ToTB /oo J sinh(Ah) MH = z3))d)

oo inh(Ah

+sgn(z3 — h)(5j36ka+5ja6k3)ra/0 /\Jo(/\p)-ssi—l:hﬁ((/\—H)) cosh(A(H — z3))d), (4.3)

k_ Ta oo sinh(\h) 3
2rq" = 76ka/0 AJ1(Ap) Sh(H) sinh(A(H — z3))dA

+sgn(z3 — 6k3/ Ao(Ap )Eth((;\/% cosh(A(H — z3))dA, (4.4)
and

4Wg—-iﬁ'- | entee)mee,
amd = [ To(p€)4a(€)d6
amusd = =2 [ Jo(p)143(6) + As(O1de, 5)
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28k = /Ow [% J1(p€) As(€)Bka + Jo(0€) As(€)br3 | dE. (4.6)

Here a, 3 take on the values 1 or 2 only. The above expressions are for 3 > h. For z3 < h
replace z3 by H — z3 and h by H — h under the mtegral signs only, (Expressions for
Ay, Aa, A4, As, Ag are given in Appendix C), and p? = rl + r2

As before, r = x — £, where £ is the location of the stokeslet. For the solution to the flow
due to the infinite array, we have to sum over all stokeslets,

> W, @7

n=—o0 m=~-00

(e} (e}

Y. o> o~ (4.8)

n=—0o0 m=--00

4.1. OBTAINING EXPRESSIONS FOR U;c

We shall demonstrate the technique by calculating Ull. As in Liron & Mochon [4] we use the
fact that the integral

/0  Mo(pX) f(2) dA

can be looked upon as the (inverse) zero-order Hankel transform. Also the double Fourier
transform

oy / / o(r1,72,23)€ ’(’\‘r‘+’\2r2)drld7'2
T

equals to the zero-order Hankel transform if ¢(ry, 75, 23) = ¢1[(13 + 13) % 3] = ¢1(p, z3),

see Sneddon [17].
Thus for the first term of (4.3) we get

[ m00rmar = [Tanon
0 0 A

— 1 e e f(A) i(Ar1+2ar)
—271_/_00/_00—/\ e d/\ld/\z,

(see Appendix C for the definition of f(A) here). Using the above relation to sum the first
term in (4.3), we obtain

5 5 [Cavrma= 35 LT [T g, o,

n=—00 mM=--00 nN=—00 m=--00

K,_ 00 uqr / ‘/ K,1n 2 + /\2) i/\zf'z d
2m n;oo m—z—oo \/ nln 2+/\2 ?

_ K1k i i f(\/(’ﬂn)2 + (kam)? )
2T e m=eo \/(feln)2 + (kym)?

ei(nlnr(l’+n2mrg)
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H — [0 o)
=F~1F~2{h( z3) +2Zf(

[e ]
cos (kgmr3) + 2 Z f(rin) cos(kinrd)

2w H = (kam = (kin)
2 & f/(kin)2+ (sym)? )
= 47;::1 m{:l \/(nm)z T cos(knrd) cos(nzmrg)} . (4.9)

Here k; = 27 /a; ky = 27 /b. For the second term in (4.3)

r? oo _ d > f(’\)
71/0 M) F(AY A = =7y E/o /\Jo(/\P)Td’\,

and then
Z Z 1/ A (Ap)f(A) dA = — Z Z o / M) L 4

1

i i / / f 1(/\1T1+/\21'2 d/\ dAz
&

—o0o m=

- =Y > / / ingry LA iuriom) gy gy,
=—00 MmM=-00

1 00 00 00

Z Z 1/\2r2d/\ / z/\lrl l:_ I )+’\_%f(/\)] d\
A2 A3 :

T =00 m=—oo? ~®

"vlﬂz (k1n)? " (kam)?
> ¥ [(sq) sq) + =y 1(50)

n=—oom=—00

cos(kinrd) cos(kymrd)

sy [MH —23) | & f
== { +2Z cos nzmr2 +2Zf nln)cos(nlnr?)

n=1

+4 Z Z [ q) + (ng—r)g)—z f(sq)] cos(k nrd) cos(nzmrg)} (4.10)

n=1m=l1

Here A = /A2 + A2, f(\) is given in Appendix C, k; = It gy = % and sq = ((k1n)? +

(k2m)?)1/2, inside the sums. In a similar way we obtain w!, in (4.5),
a r [® o2 [ Ay (/\)
G RSV AW AdA:—/ Ao(pA dA

5y MeNANB = 25 [ ase(en 2

& 1 * [ Al(’\) i(Ar1+Agrs)
= — — — et r2)d ; dX
87‘2 27r/ / ¢ 1542

= ___/ / /\2 Al (A) 1(/\1T1+/\2‘r2) d/\l dA2

and then

oo}

Z Z / / /\fﬁiﬁe"(’\l”*”\zn)dz\ld/\z

n=—oom=-—
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mfiz E E (mn py )cos(mnr?)cos(ﬂzmrg)

n=—00 Mm=—00

_nmz {6h(H - h)a:3(H - 1:3)

42 i(nln)Al(mn) cos(mm?)

2 H’ n=I
o o o) A
+4 Z Z (k1n)? ISQ) cos(knry) cos(nzmrg)} . (4.11)
n=1m=1

Expressions (4.9), (4.10), (4.11) complete the solution for U 11 Notice the free term in (4.11),
which is a Poiseuille flow (parabolic profile). One can, of course, add an arbitrary Poiseuille
flow to U}, without contradicting the periodicity condition. The particular Poiseuille flow
obtained in (4.11) is such as to ensure that the total flux in the x;-direction is zero, since we
have summed stokeslets, each of which creates zero flux. All components of the velocity and
pressure are given in Appendix C.

4.2, NUMERICAL RESULTS

In Figs. 7 we show 47xU| for the same array as Section 3, but with another plate at H = 1.
The additional plate now changes the picture completely as compared to the one plate case.
The graphs are different to begin with because here the flux is always zero, see Liron [13],
but more important the graphs change in size, shape and sign, when parameters are changed,
which only act to rescale in the one plate case. These should be compared with the kernel D
in Liron [13] which one obtains by averaging the present solution over x,. This means that a
much denser net must be used if we wish to obtain the averaged-out effect of all stokeslets.
Evidently, this should be much denser than the one obviously sufficient for the previous case.
Fig. 7a shows variations due to z, far from any stokeslet. Fig. 7b shows the change in behavior
due to ry, and Fig. 7c the change in behavior due to changes in A. It is particularly worthwhile
noticing Fig. 7b, in which, at all values of 1, for all z3, 47U] is negative. This is impossible

::30.0-——

12} 22=0.1----]
=02 —

1t 22203 +eeen

(@

..........
------------
--------------

----------------

02F - R
.04 | e e e e e e e e . ]
1 1 1 {
0 0.2 0.4 0.6 0.8 1
I3
Fig. 7. 4rU{ as a function of 3 for various values of the other variables and parameters. (a) a = b = H =
h =05,z =05 and several z;; D) a = b=H = 1,h = 0.5,z —03andvar10us:cl,(c)a= = H=

z1 = z; = 0.3 and various h. Notice the large changes in behav1or
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Fig. 8. 4nU? as a function of z3, fora = b= H = 1, h = 0.2, z; = 0.5 and several values of z,.

T3



Stokes flow due to infinite arrays of stokeslets in three dimensions 285
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Fig. 9. The pressure as a function of z3,fora =b= H = 1,h = 0.5. (a) 218P' Oz, for 1 = 0.5 and several z3;
(b) 2OP* / Oz, for 22 = 0.3 and several ;.

when averaging in the xz; direction, as in Liron [13], because then the integral over each of
those graphs should be zero (zero flux). Thus we see that the local behavior changes drastically
inside the basic cell unit, from all positive to all negative, say, as in Fig. 7a, and averaging first
may lead to completely wrong results when used in applications. Other velocity components
show similar behavior, see an example of U?, in Fig. 8. In Figs. 9 we show distributions of
the pressure gradient OP' /9z;.

5. Conclusions

We have discussed three problems of summing up, without averaging, an infinite number
of identical periodically distributed stokeslets in three dimensions. The three cases are an
infinite line above a flat plate, an infinite regular array above a flat plate and an infinite
regular array between parallel plates. The last two cases were used originally in papers by
the author, to model infinite arrays of cilia. In these works averaging in one space dimension
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was first performed. Here we obtained expressions for the velocity without any averaging. All
expressions are rapidly converging infinite series of one form or another. The demonstration of
the results indicate that for confined spaces the averaging first may lead to gross inaccuracies.
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6. Appendix A
The full expressions for the velocity and pressure of an infinite lme of stokcslcts, as descrlbed in Section 2, is

given below. We have replaced z3 by z, @ = z — h, 8 = z + h, 8* = o® + 73, p* = % 4 r2, see section 2. The
following hold for p, s > 0.

h
8nul} = gln (f) g-(Tl) - 32’; z

(T8) — — (T2)

b= () s e 2 (L L) LByt g6

8ruly = aln S +a(T1)+ s |7 7 2 (T'5) — . (T11)
8r2hz 32n%hara 327her
P'a a3pt a?

(T8) + (T11),

i

grulld %m<§)+ T+ 2 (‘:—2~§> T(Ta+ - dhz | 167hz 2 (T

2 2
__Sﬂ‘hz 32nthzf (T8) - 321rhzﬂ (T11),
pa a’p?
2 h
8rul; = 8":2 (T3) + M (T9) = 8rulU?,

8 167rh 32nhz
bl = 32 (76) + )+ 222 7o),

Brul? = 2r (g_ _ _ﬂ_ ) sm 8171 (9) 4 dhry mmz (1)

e \#7p o
8hzfr,  32m hz,Brz 327rhz,3rz
+ o + (T8) + a7 (T11),
8 167rh 327r ha
Bl = 3 (76) + o 8 (19),

8 4h 16 h
$rull = 2;2 (:'—2 - g) 2T+ p’; + 2212 ()

8hzﬁrz 3272 hzfr; 327hzfr:

p'a o 0T

(T11).
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The corresponding pressures for U, k = 1,2, 3, are

321r hﬂ

4xP' = i—’; (T3) + (T9),

2
anp? = 2 (i - i) 8772 (1s) + 3m
pa

a \s& p?
321r2h 'r 32whBr
3; 2 (T8) + —ﬂl(Tu)
3 2fa B 8 4h 161rh
3272 h 3 321rh[32
- T8 - (T11).

The T's appearing above are the following infinite series;

(T1) = iccs (2121‘?) [Ko (21:—3) Ko (21;1;;)] )

hind 0
(T6)=lein 21r:rl [Ko(Z‘lrls)_ﬂKo(Zwlp)]’

=1

= 2xldN (o, (27ls\ B 2l
= 55 (24) o, (22) - 21 (2
(T7) Zcos - [sKl - ” -

Shﬁ2
Pta
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_ = 2xird 2rlp
(T11) = ;lcos (T) K, (—a—) .

Here Ky and K are the modified Bessel functions of the first kind of order 0 and 1 respectively, see Abramowitz
& Stegun [16].
Appendix B

The full expressions for the velocity and pressure of a doubly infinite array of stokeslets above a flat plate, as
described in Section 3. We have replaced =3 by z, « = z — h, 3 = 2 + h. Alternative expressions are given to
cover all possibilities. The bracketed numbers stand for infinite series and closed expressions, see below. As before
K stands for the modified Bessel function.

Velocity components

srull = 2@+ 58 - T () + B (ag) - 202 (33 4 167R gy

321r2hz 327 hzﬂz 321rhzﬂ
bz

(52), (az + () > 0),

(20) - (53) -

8

2 327l’ h
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327r hz

sl = £ () + £ 8) - 25 20) - 57(19), (22 + (0 > 0)

2
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sl = L@+ @)+ 2+ 35+ T ) 4 1570 sy
2
_32#22(3 (53) 321rhzﬂ (52), (a +(r) > 0),
8rull = 1(1)+ -‘1(7)+ %(6) + %7;-(26) 2r’ hz (28) + 16"’” (54)
2 2
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321r hz
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l67rh (57) + 272 hz (45)

8 27h
8rull = %(4)+3;—r(15) ul 2 (34) +

+ 3272hzf3 327rhzﬁ

E (49) +

(52), (@ + (1) > 0),
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h 2n2h
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The bracketed numbers appear below. Whenever p; and p; appear in an expression and only p? is defined, then p;
is obtained from p; by replacing o« by 3.

sinh?(73/b) + sin? (nr /b)
sinh?(ra/b) + sin?(wrd/b)

(1

_ ., [sinh*(xB/a) + sin*(nr}/a)
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(4) = asin(2nrd/a) : Bsin(2xrd/a)
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Appendix C
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The full expressions for the velocity and pressure of a doubly infinite array of stokeslets between two flat plates, as
described in Section 4. Because of periodicity, it is sufficient to look at x = (zy, %2, 23) = (r),73,23),0 < 7 <
a,0<r) <b0<zs < H.
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Velocity components
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For the definition of f, sgq, etc., see below.
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n=1
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Pressure

Together with the implicit condition that the total flux is zero for the velocities, it follows that there is a positive
pressure head per basic length (a or b) in the z; and =z, direction. Thus the rotal pressures P! or P? would be
infinite, and we therefore look at 8P'/8z, and 8P*/8z,. For P? the total pressure head is zero, and P? itself is
given.
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cos(nmr?) cos(kamry)

n=1 m=1
3h(H —h)
+—-——(-F5——) + z(mm)Ag(nzm) cos(mmrg)} ,
m=]

P = 22 {sgn(za h) [% + 3 g(kam) cos(kamr)

m==z]

+ z g(k1n) cos(kynrl) +2 z z g(sq) cos(xinr?) cos(nzmrg)]

n=} m=1 n=1

+2ZE (:( 9) cos(x nr}) ) cos(kamry) +Z 6( m cos(nlnr?)

m=] n=]
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+Z Ac(ram) (o) 4 RO = W) = 2h)}’

(kam)? 2H?
where
K = %r;m = 2Tw;sq =1/ (kin)? + (k2m)2.
Define
1 .
a()) = sinh2(,\H) —OH) {z3[h sinh(A\H) cosh(AM(H — z3 — h))
—H sinh(Ah) cosh(Az3)] — Hhsinh(\z3) cosh(Ah)
+H? sinh(\z3) sin(AR) coth(AH)},
AH
B\ = ~ R OH) = OH) [23h cosh(A(z3 — h))
+H (23 + h) sinh(Ah) sinh(Az3) — H (z3 sinh(\h) cosh(Az3)
+h sinh(Az3) cosh(AR)) coth(AH) + H? M:Q(STH;;(’\L) ,
then

Ai(A) = o) +8(3)
A(N) = —a(N) +8())

1
AN = SO Oy e H sinh(es — b))

[z3 sinh(Ah) sinh(A(H — «3)) — hsinh(Az3) sinh(A(H — R))]
sinh(AH)

:t[:tgH Sinh(/\:ltg) smh(Ah) + z3h smh(/\(H - T3 - h)) smh()\H)

~H(H — h)sinh(\k) sinh(Az3)]},

+H?)\

where the + sign is used for U, U7, and the (—) sign is used for U?, U3,
/\2

As(A) = SR OH) = OH): {H sinh()\h) sinh(Az3)

+h sinh(AH) sinh(A(k — 23 — h)) + AR H sinh(A(z3 — h))

sinh(A(H — z3)) sinh(\h)
HAH? SO H) } ’
2\ .

As(A) = SR V) — OHY {H sinh(\h) cosh(Az3)

—hsinh(AH) cosh(A(H — z3 — h))

—AH |hcosh(A(z3 — h)) — H COSh(/\(}s{in;(Tf)l))smh(/\h)] } '
Symmetry properties of A;:
A(H —z3, H — h) = Ai(zs,h)
Az(H - zg,H - h) = Az(.’ts,h)
A4(H —.'l:g,‘H - h) = —A4(m3,h)
A_s(H had :B3,H - h) = As(ms,h)
As(H —z3,H — h) = —As(zs, h)
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sinh(Ah) sinh(A(H — z3))

h

b\ H B2
fQ) = sinh(,\(lj - h))s)inh(,\ms) <h

Sinh(\H) o
sinh(AR) cosh(A(H — x3))
» - Sinh(\H) y T >h
9(N) =9 sinh(A(H — h)) cosh(As) <h
Sioh(\H) B
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